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Abstract 

 

A computation of the electron mass is found utilizing a generalized holographic mass solution 

in terms of quantum electromagnetic vacuum fluctuations.  The solution gives a clear insight 

into the structure of the hydrogen Bohr atom, in terms of the electron cloud and its relationship 

to the proton and the Planck scale vacuum fluctuations. Our electron mass derivation is in 

agreement with the measured CODATA 2014 value. As a result, an elucidation of the source 

of the fine structure constant  , the Rydberg constant R , and the proton-to-electron mass 

ratio   is determined to be in terms of vacuum energy interacting at the Planck scale.  

 

 

Introduction 

 

Measurements of the electron mass are typically determined utilizing penning traps, where the 

latest measured CODATA 2014 value is given as 
289.10938356(11) 10 g  [1]. However, 

although measurements are extremely precise a satisfactory derivation from first principles has 

yet to be found and thus the nature of the electron remains a mystery.  

 

The Bohr model considers the electron as an extended source while relativistic quantum field 

theory (QED) treats the electron and positron as point particles with no internal structure yet 

each possessing an intrinsic angular momentum, or spin. Furthermore, the point-like nature of 

the electron, in quantum field theories, leads to an infinite bare mass and bare charge. 

Therefore, to agree with measurement, the mass of the electron is subsequently given in terms 

of two infinities, the bare mass and the radiative corrections, renormalizing to a finite value.  

This value can be given in terms of fundamental constants, including the Rydberg constant, 

defining the standard mass of the electron as,  
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giving a value in agreement with the measured CODATA 2014 value. However, this standard 

derivation, in terms of the Rydberg constant, does not reveal the nature or structure of the 

electron, or give us insight into the source of mass and charge.  

 

Currently, no experimental evidence supports the point-like view of the electron, although 

Crater and Wong suggest that such a view would be supported if the existence of a peculiar 

ground singlet state 
1

0S is found [2] or at the least could provide an experimental limit on the 

point-like nature.  However, as noted by Wilczek, “An electron’s structure is revealed only 

when one supplies enough energy […] at least 1 MeV, which corresponds to the unearthly 

temperature of 1010 kelvin” below which it ‘appears’ point-like and structure-less [3].  
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Although the position and momentum can only be defined in terms of a probability cloud, the 

quantum behavior of the electron is successfully calculated by the current standard model. Yet 

the most precise prediction being that of the g-factor [4] [5] where the observed deviation [6], 

known as the anomalous magnetic moment, still requires the inclusion of a contribution from 

quantum vacuum fluctuations [7]. Quantum corrections are also expected for an electric field 

– but as yet no such field has been detected. Based on charge-parity (CP) violating components 

the standard model assumes an upper limit on the electron electric dipole moment (EDM) of 
3810ed q cm, [8] which is smaller than current experimental sensitivities. However recent 

experiments confirm a non-zero EDM e.g. [9] and [10] who find 
2810.5 10ed q  cm and 

256.05 10ed q  cm, respectively, suggesting the standard model is incomplete and there must 

be other sources of CP violation. Higher EDMs are predicted by extensions to the standard 

model e.g. supersymmetric models, which predict 
2610ed q cm [11].  

 

Defining the fundamental characteristics of particles from first principles, and without free 

parameters, is of great importance as not only will it provide information about the structure of 

subatomic particles but also the source of mass and the nature of spacetime itself.  Successful 

predictions allow us to confirm and improve upon existing models.  

 

The current source of mass, according to the standard model, is through the interaction with 

the Higgs field, where as the ‘mass terms’ violate gauge symmetry, a measurable mass is only 

acquired through symmetry breaking. However, the Higgs mechanism introduces complexities 

with a non-zero vacuum expectation value which only predicts 1 to 5 percent of the mass of 

baryons, and in which the Higgs particle mass itself is a free parameter [12]. 

 

In earlier work a geometric model was proposed utilizing a generalised holographic mass 

solution, which successfully computed the mass of the proton [13]. As a result, a precise charge 

radius value was found which is within an1 agreement with the latest muonic measurements 

of the charge radius of the proton [14], relative to a 7  variance in the standard approach [15]. 

Utilizing this model, we now extend our holographic mass solution in an attempt to deepen our 

understanding of the electron and its relationship with the Planck scale vacuum fluctuations. 

Specifically, our result computes the mass of the electron in terms of surface-to-volume ratios 

of Planck oscillator information bits with a value in agreement with the measured CODATA 

2014 value. 

 

This new definition, with a source for mass, successfully predicts the energy levels for the 

currently known quantum states of the Hydrogen atom, as well as the atomic number for the 

n=1 state of all known atoms. 

 

 

The Holographic Principle and the Proton Mass 
 

The Bekenstein conjecture, first suggested by Jacob Bekenstein in the early 1970’s, proposed 

that the entropy S or information contained in a given region of space, such as a black hole, is 

proportional to its surface horizon area [16] [17] [18]. Based on the laws of thermodynamics 

and the prediction of Hawking radiation, Hawking inferred and subsequently set the constant 

of proportionality to be ¼ of the surface horizon [19]. The Bekenstein-Hawking entropy of a 

black hole expressed in units of Planck area is thus given as, 
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where the Planck area, 2  is taken as one unit of entropy and A is the surface area of the black 

hole. 

 

Bekenstein [20] further argued for the existence of a universal upper bound for the entropy of 

an arbitrary system with maximal radius r, 
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and found that this maximal bound is equivalent to the Bekenstein-Hawking entropy for a black 

hole (assuming 2E mc ). This confirmed the long suspected assumption that black holes have 

the maximum entropy for a given mass and size, which along with unitarity arguments led to 

the holographic principle of ‘t Hooft, where one bit of information is encoded by one Planck 

area [21] [22].  

 

Following the holographic principle of ‘t hooft [22], based on the Bekenstein-Hawking 

formulae for the entropy of a black hole [23] [24], Haramein [13] [14] defines the holographic 

bit of information as an oscillating Planck spherical unit (PSU), given as 
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 where 
2

r   and is the Planck length. 

 

These PSUs, or Planck voxels, tile along the area of a spherical surface horizon, producing a 

holographic relationship with the interior information mass-energy density. 

 

 
Figure 1: Schematic to illustrate the spherical Planck voxels packed within a spherical volume. 



 
 

Theories of quantum gravity suggest that the quantum entropy of a black hole may not exactly 

equal to A/4 [25]. Indeed, in Haramein’s generalized holographic approach, he suggests that 

the information/entropy of a spherical surface horizon should be calculated in spherical bits 

and thus defines the surface information/entropy in terms of PSUs, such that,  
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where the Planck area, taken as one unit of information/entropy, is the equatorial disk of a 

Planck spherical unit, 
2r  and A  is the surface area of a spherical system. We note that in this 

definition, the entropy is slightly greater (~ 2.5 times) than that set by the Bekenstein Bound, 

and the proportionality constant is taken to be unity. To differentiate between models, the 

information/entropy S , encoded on the surface boundary in Haramein’s model is termed, 

S  . 

 

As first proposed by ‘t Hooft the holographic principle states that the description of a volume 

of space can be encoded on its surface boundary, with one discrete degree of freedom per 

Planck area, which can be described as Boolean variables evolving with time [21]. Haramein, 

following his definition for surface information  , similarly defines the information/entropy 

within a volume of space in terms of PSU as, 
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where V is the volume of the spherical entity. 

 

In previous work [13] it was demonstrated that the holographic relationship between the 

transfer energy potential of the surface information and the volume information, equates to the 

gravitational mass of the system. It was thus found that for any black hole of Schwarzschild 

radius Sr  the mass 
Sm can be given as, 
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where m  is the Planck mass,   is the number of PSU on the spherical surface horizon and R  

is the number of PSU within the spherical volume. Hence, a holographic gravitational mass 

equivalence to the Schwarzschild solution is obtained in terms of a discrete granular structure 

of spacetime at the Planck scale.  

 

Furthermore, this inequality in energy potential between the surface information and the 

volume information, where R   for all 2r   suggests that both, the gravitational curvature 

potential is the result of an asymmetry in the information structure of spacetime, and the volume 

information is not only the result of the information/entropy surface bound of the local 

environment but may also be non-local, due to wormhole interactions as those proposed by the 

ER=EPR conjecture where black hole interiors are connected through micro wormhole 

interactions [26].  



 
 

Moreover, we find that the only radius at which the holographic ratio equals one (i.e. R  ), 

where all the volume information is encoded on the surface, is the condition 
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where Sr  is the Schwarzschild radius of a black hole with mass m m . In this case, the surface 

entropy   and the volume entropy R  are thus calculated to be, 
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This results in a holographic ratio of, 1
R


  yielding 

R
m m


 , such that a balanced state 

of equilibrium between the volume-to-surface information transfer potential is achieved, 

supporting the conjecture that due to its ultimate stability, the Planck entity is the fundamental 

granular kernel structure of spacetime forming a crystal-like structured lattice at the very fine 

scale of the quantum vacuum [27] [28]. 

 

Additionally, it is important to note that there is a factor of 2 or ½ between the Planck length 

and the Schwarzschild radius of a Planck mass black hole, and although its physical meaning 

has yet to be completely understood, it has been related to geometric considerations of motion, 

particle physics and cosmology, and commonly occurs in the most fundamental equations of 

physics [29]. However, the origin of this factor may be the result of the holographic surface-

to-volume consideration of the fundamental geometric clustering of the structure of spacetime 

at the Planck scale, where one Planck mini black hole is a cluster bundle of Planck spherical 

vacuum oscillators [30].  

 

Of course, these considerations lead to the exploration of the clustering of the structure of 

spacetime at the nucleonic scale. Here it was found that a precise value for the mass pm  and 

charge radius pr  of a proton can be given as, 
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where  is defined as a fundamental holographic ratio. Significantly, this value is within a 1

agreement with the latest muonic measurements of the charge radius of the proton [13] [14], 

relative to a 7  variance in the standard approach [15]. 

 



 
 

When utilizing this predicted radius (Eqn. 12), we then find that the gravitational coupling 

constant, g g sF F  , emerges as a natural consequence of the holographic ratio where, 

 
2 394 5.90595(24) 10g                   Eqn. 13 

 

again, finding the information surface-to-volume ratio related to the gravitational curvature 

mass potential, in this case, at the nucleonic confinement scale. We further evaluate the value 

of the velocity and mass dilation near or at the horizon of the proton and find it to be correlated 

to the range associated with the strong interaction defined by the Yukawa potential giving a 

first analytical solution to the confinement problem [13]. 

 

 

Determining the Mass of the Electron 

 

In the previous section we described a generalized holographic solution which derives the 

proton mass from the granular Planck scale structure of spacetime in terms of a surface-to-

volume information transfer potential. In an attempt to deepen our understanding, we consider 

the holographic ratio relationship as we extend the radius of the co-moving Planck particles to 

pr r .  

 

In earlier work [13] it was shown that the confining force exerted by a proton follows Lorentz 

mass dilation and varies as a function of velocity. Following this approach, we evaluate the 

Lorentz transformation as a function of velocity and find the mass of the electron occurs at the 

standard expected velocity for the electron v c  (see Figure 1), where  is the fine structure 

constant.  

 

Figure 2: Graph showing the Lorentz factor  
2

1 1 v c     as a function of velocity for the proton to the electron. 

It is thus reasonable to consider a velocity relationship in the holographic mass solution which 

becomes significant at v c , and in this case appears at pr r . Thereafter, we evaluate this 



 
 

velocity relationship as we extend the radius, and thus the holographic surface-to-volume ratio, 

such that, 
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where   is a geometric parameter, v  is the velocity at the Planck scale, ev c  is the velocity 

of the electron, and e  is the holographic surface-to-volume ratio in terms of PSU. 

 

  

With 1 2   (refer to previous section on the factor of 2 in physics), we find a mass in precise 

agreement with the experimental mass of the electron when the holographic ratio reaches 

0r a , where 0a  is the Bohr radius. 

 

The solution for the mass of the electron (Eqn. 14) can thus be given as, 

 

1 1 1

2 2 2

e
e e e

e e

v c
m m m m

v R c


 

 
               Eqn. 15 

 

where 
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With this solution we find a mass of, 
289.10938(30) 10em g  , which compared to the 

measured CODATA 2014 value is accurate within 1  and with a precision of 
510
 [1]. The 

precision and thus accuracy of our solution is restricted by the value of the Planck units which 

are dependent on experimental values given for the Gravitational constant, G. However, when 

the absolute value for the holographic mass solution for the electron is considered the mass is 

comparable with the experimental CODATA 2014 value to a greater degree of accuracy 1  

and a precision of 
810
 with a confidence level of 99.99% . 

 

This holographic mass solution, can as well be formulated in terms of charge relationships,  
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where  
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which when given in this form allows greater insight into the source of charge. 

 



 
 

This solution, as well as being significantly accurate, gives us insight into the physical and 

mechanical dynamics of the granular Planck scale vacuum structure of spacetime and its role 

in the source of angular momentum, mass and charge. The definition clearly demonstrates that 

the differential angular velocities of the collective coherent behavior of Planck information bits 

determines specific scale boundary conditions and mass-energy relationships, analogous to the 

collective behavior of particles in a rotating fluid [31] or superfluid plasma [32].  

 

This solution as well resolves the difficulty associated with hierarchy problems (we will 

address the electron-to-proton mass ratio below).  The current quantum understanding resolves 

the hierarchy bare mass problem for the electron mass through the consideration of antimatter 

where positron and electron pairs pop in and out of the vacuum. These virtual particles smear 

out the charge over a greater radius such that the bare mass energy is cancelled by the 

electrostatic potential, where the greater the radius the lesser the need for fine tuning. In the 

solution presented here the electron is extended to a maximal radius of 0a and we are able to 

demonstrate that the mass of the electron is a function of the Planck vacuum oscillators surface-

to-volume holographic relationship, over this region of spacetime. The hierarchy bare mass 

problem is thus resolved by considering Planck vacuum oscillators acting coherently extending 

over a region of space equivalent to the Bohr hydrogen atom. 

 

In much the same way that the electron analogy is proposed to resolve the Higgs hierarchy 

problem, with the inclusion of virtual supersymmetric particles, we could also assume that the 

surface to volume holographic relationship in the Higgs region of space would solve for the 

mass of the Higgs, where the Higgs radius would be of the order, Higgs pr r r  .  

 

The hierarchy problem associated with the mass of the electron and the mass of the proton can 

also be understood in terms of the surface-to-volume holographic ratio over their respective 

commoving regions of space, where the greater the radius the smaller the mass. The mass is 

thus a direct function of the commoving behaviour of the Planck vacuum, where the spin and 

mass decrease as a function of radius. 

 

 

Extension of the Holographic Solution for Radii less than the Bohr Radius  

 

When we further extend this solution for the n=1 state we find that, at radii 0r a , the 

holographic mass solution increases as shown in Figure 3.  

 

This application of the holographic solution gives us the following equation, 
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where ( )r r  is the holographic ratio as a function of the radius r  for 0r a , and N is an 

integer. 

 

With this solution, we could recognize N as being the atomic number Z, where for 

progressively smaller fractions of 0a  we find an interesting proportional relationship between 

the holographic mass and the mass of the electron (see Figure 3). 

 



 
 

 
Figure 3: Graph to show the holographic mass solution as a function of radius. Note: the holographic mass is equal to me at 
corresponding radii of a0/N. For example, the holographic mass: equals the mass of one electron at a radius of the hydrogen 
atom in its n=1 state; equals the mass of two electrons at a radius of the helium atom in its n=1 state; equals the mass of 
three electrons at a radius of the Lithium atom in its n=1 state, and so on. Note this relationship is only shown on the graph 
for the first three elements, but continues for all known elements. 

 

From this holographic mass solution, we are thus able to calculate the total mass of the electrons 

for each element, without the need for adding the atomic mass number, Z. We instead find that 

the atomic mass number Z could be a natural consequence of the holographic solution. As a 

result, a picture develops in which the structure of the Bohr atom and the charge and mass of 

both the proton and the electron are consequences of spin dynamics in the co-moving behaviour 

of the Planck scale granular structure of spacetime. This suggests that the confinement for the 

electron is a result of the quantum gravitational force exerted by the dynamics of the vacuum 

at the Planck scale. The electrostatic force can thus be accounted for in the same way the strong 

force is accounted for in the case of the proton [13] [14], where in both cases, the proton and 

the electron confinement is the result of a quantum force exerted through the granular Planck 

scale structure of spacetime. 

 

 

Deriving the Rydberg Constant, the Fine Structure Constant and the Proton to Electron 

Mass Ratio 

 

The Rydberg constant is considered to be one of the most well-determined physical constants, 

with an accuracy of 7 parts to 1012 and is thus used to constrain the other physical constants 

[33]. However, as the same spectroscopic experiments are used to determine both the charge 

radius of the proton and the Rydberg constant, the recent muonic measurements of the charge 



 
 

radius of the proton implies that the Rydberg constant would change by 4 5  [34] [35] [36]. 

This is known as the proton radius puzzle. The standard formula for the Rydberg constant is 

given as, 
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so any change in the experimentally determined value for the Rydberg constant could thus have 

an effect on its relationship with em , , c and h . It should be noted that em  and h  are currently 

known to less accuracy and would thus not be significantly affected by a shift of 4 5 in the 

Rydberg constant. However, in order to understand and subsequently infer any discrepancies 

between experimental values and theoretical values it is important to understand how the 

Rydberg constant emerges. A geometrical solution, that offers a physical description and 

insight into how R emerges can be found from the holographic mass solution. This reasoning 

is highlighted for the case of the proton, where the holographic mass solution yields a result 

for the charge radius of the proton, in which the proton radius puzzle is resolved [13] [14].  

 

The standard formula for the mass of the electron is, 
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which can be reduced to, 
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Equating this (Eqn. 19) with the geometric solution (Eqn. 15) gives, 

 

2

4 1

2
e e

m R
m m




 
                 

 

and thus 
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This definition offers a geometric solution for the Rydberg constant in agreement with the 

experimentally determined CODATA 2014 value.  

 

This approach can be extended to derive the fine structure constant,   and the proton to 

electron mass ratio,  , in terms of e . 

 

If we equate the new geometric solution (Eqn. 20) with the standard definition (Eqn. 18) we 

get,   
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and thus  
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which is in agreement with that of the CODATA 2014 value. 

 

The ratio of the proton mass to the electron mass,  can also be given in terms of the geometric 

solution (Eqn. 11 and Eqn. 15), 
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Summary 

 

A new derivation for the mass of the electron is presented from first principles, where the mass 

is defined in terms of the holographic surface-to-volume ratio and the relationship of the 

electric charge at the Planck scale to that at the electron scale. This new derivation extends the 

holographic mass solution to the hydrogen Bohr atom and for all known elements, defining the 

atomic structure and charge as a consequence of the electromagnetic fluctuation of the Planck 

scale. Furthermore, the atomic number, Z emerges as a natural consequence of this geometric 

approach. The confinement for both the proton and the electron repulsive electrostatic force 

are now accounted for by a quantum gravitational force exerted by the granular Planck scale 

structure of spacetime.  

We conclude that this new approach offers an accurate value for the mass of the electron. As 

well, contrary to the standard calculation (as shown in Eqn. 1), it offers a physical 

understanding to the structure of space time yielding significant insights in to the formation 

and source of the material world. Such insights are not trivial and should not be ignored.  
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